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Estimation in the Presence of Noise of a Signal Which
is Flat Except for Jumps - Part 11, The Empirical

Bayes Approach

Abstract
\W/

This is the second of a two-part paper. 1In the first
part Yao (1982), a special Bayesian Model & is studied in
detail. 1In this part, a more general model is proposed
and studied in an empirical Bayes framework. The results
for Model A are applied to step-function signals using
the ideas of empirical Bayes and maximum likelihood
applied to the parameters of the Bayesian Model A. An
efficient computational method is proposed to approximate
the likelihood function under Model A. Several empirical
Bayes estimators of the unknown step-function signal are

compared by simulation.
/\

Key words: Change points, nonlinear filtering, smoothing,
empiricsl Bayes, maximum likelihood, pseudo
maximum likelihood, Kullback Informatjon.

AMS 1980 subject classification: Primary 62M20,93El4;
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1. Introguction
This is the second of a two-part paper. We consider
the problem of estimating a signal which is a step function

when one observes the signal plus noise. In other words,

in discrete time denote the uiggal. process by Vyelyeane "lg
and let Vel = VU except for occasional changes. Let

the observations X =u + ¢, 1<n<T where the €
are noise. We are interested in estimating v, based
on X3, 1 <i <T. In the first part Yao (1982), we
studied this problem in a Bayeaian framework. A special
Bayesian model (to be called Model A) was proposed there
and the corresponding Bayes solution was derived and
evaluated analytically and numerically. In the second
part, we will invoke the jdea of empirical Bayes to attack
more general cases where not all of the assumptions of
Model A are satisfied.

In the next section, a generalization of Model A isa
proposed. 1In Section 3, partial results are obtained on
identifying the underlying distributions and estimating
optimally the step-function signal. In Section 4, the
results for Model A are applied to more general step-
function signals using the ideas of empirical Bayes and
maximum likelihood. In Section 5, an approximation to
the likelihood is proposed and this approximation (s

evaluated in terms of the Kullback information. 1In
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Section 6, several empirical Bayes estimators are studied

by use of simulation.

2. A General Bayesian Model

In this section we propose the following model,

{1) The time intervals between successive changes in

the signal are i.i.d.

(2) The successive heights of the signal are i.i.d.

{3) The additive noise is an 1.i.d. sequence,
To be more specific,

') et €,£,,6,5,85,... Dbe i.i.4. (Pc), positive
integer valued with finite first moment . Let E' be
independent of (En! and

Pr('si) = Prig>i)/eg i=1,2,...
Define the sequence of change points (“i) by

Mg 20,y SEY, My SE 4,0 My ENTEE 4Lty e
Notet The random variable [' 1is introduced in order that
the 0-1 sequence generated by {(n;,n;,...} (ones at the
ny, end lnin elnewhere} be stationary. This is a matter

of convenience snd is not essential as far as asymptotic

results are concerned.

-3~

(2') Let Y, Yoo¥y, ¥ be i.i.d., (Fy) and

20 ¥
represent successive heights of the signal. i.e., define

the signal process (un} to be
[ for e M < Mgy

(3°) Let the additive noise €,e;,6,,...,6, be

i.i.d. (F:). Assume Ec = 0, Let the observations be
X =y *e, n=1, ..., T

Note: Model A is a special case of this general model

when PE is geometrical and ¥, and F_  are normal.

Model A can be described by four parameters P,0,0,0

where prit =1) = p1-p) ™1 | . aN(0,0%) ang £ eN(0,0,%).

Suppose rc, Py, and rt aye not known. Two
natural questions arise:

{Q1) Are they jdentifiable?

{Q2) Can o be estimated "optimally®?

We designate the subSequence { X5 i < »n < J) by

x]"  and we anall call estimates U (X1 of

uniformly asymptoticall relative to ¥, ,F ., and
asymptoticelly [ 35 4

r it

)




lim £ 10 xT,m-u 12
el S0 S0 B Lt Y

= 1im B

T 2
Hm By Bir e, r) @olXp) v

uniformly for n=1,2,...,T.

where E means expectation according to the

(Fe Fy.F)
probability structure determined by 'E"Y and P
This definition is consistent in essence with that in

Robbins (19¢4).

3.___Partial Answers to (Ql) end (Q2)
Proposition 3.1 (Strong Consistency of )

Assume that  /x%dry(x) <=, [x84F (x) <=, Var(Y)>0,

and Et? <o, Then thers is an satimate f; such that

—_——

'C ~rg w.p.i.

Proot of Proposition 3.1
Although (xn) is not a weakly dependent sequence,
the following are still true.

T
a a
(3.1} 1Uim % nzlx" =EX) a5, igacd

<
= =

= mixd,, a0, 120,008 0

-1
1 Gy
(3.2) 1im XX
tom T ,.21"""

W ST
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The proofs of (3.1) and (3.2) appear in the Appendix,

We have

8
.3 efxf moporee® o e (1m0 m0ry e 51 1Yy ee )

where p; = Pr(E= {} and

(3.4) o, TPr(t* > 1 +t) = ] I py/EL
t - kelet  j=x 1
-
- 1 u-vp/ee
i=lst

= 1 dp -

t] o op/EE
1=14t i=142

[ -®
tee - [ dpy -t [
i=1

Py /EE
i=l+t

t-1

- (BE -1+ ] (t-1)p )/28 .
i=1

In particular, o, < 1.
Substituting in (3.1} and (3.2), we have, as

Tee,

/2“
\ ~ Copy




1
(3.5) M= F

1

(3.6} Ay

o
g

(3.7 A

=1
(3.8) A =5

=1
(3.9) By ¥

=1
(3.10) B,= &

-1
(3.11) By= §

s

1 ox - EBY

~

x . Ev? + 2?2 a.s.

3 3 2 3

xa + BY” 4+ JEYEPe® + Ee a.s.

3

: - 2yY + eE?Ee? + amyEc® 4 Ect als.

Tl 2 2
M X Xoay® 1EY 4 (1-0,) (EV)® 2.6,
n=1

T=1
x2

3.2 - 2 2gy) a.s.
1 Mt oy (Er3sre?EY) + (1-0)) (EY’EVeEC’EY) A

L 51
i; x:‘nox‘ 91““”"2"2”°3"’
=

+ Q-py) (erlErasee? () 2o eriaL.

~7-

T-1
o1 2,2
3.12) B,z 5 nzl XXy

2..2

~ oy evfezeeZev?e e ?)

+ ooyt (YD) 202Ec 2BV (Be D ?) s,

Using (3.5) through (3.12) we shall show that £

can be consistently estimated. Pirst it may be seen that

2y e 2.0 ol 2 a2 oad _
RUEYT) = (EY*1T+2(R]-B,) 4 (EY") [3A, 1B ~AT) 4R, (2K B, -2A; +A|A,-B,)

2 _ a2 oals ad
+ AJAJ-AS-By4B,) 4 IR (A1-3AA ) (B -AT)-ATA,+A (B,

2 2 2 2
- Az(Bl-Al)-Bl(Alhl-lz) + (BJ-B‘)AHO 0 (T+=) a.s.

The case where 0y = 0 4is special, for then EBf = ) and

a change takes place at each time point. Then there is no
way to distinguish the signal from the noise without
additional information. For this reason we consider two

cases:

(1) wmen 8-A2<rM/3 ogtimate o, by 5,2 0 ana

thersfore estimate rc by 61. the distribution with

unit masas at 2.
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2

(2) when Bl-ll 1/3, 2

estimate EY
2

solution (denoted by EY“) of the quadratic equation
2

> T by the larger

aley?) = 0. Since nA}) =0, EY

zonz (T+=) a.s. when ol>0. By (3.5) and

> Al e will be
shown EY
(3.9), estimate o, by 5, mn((8,-A{)/e¥*-Ad), 0. sy
(3.4), estimate E by #% : 1/(1-5)). By (3.2) and
Tt .
[ | 2 2_.2
(3.31, estimate p, by o, = Iz 21 XX op~Ay 1/ (EYS-A))
for 2 < t < {log TI+1l. Applying (3.4) which relates
oy and
by

Py+ we are led to introduce. ﬁk recursively

Py =2 - EEQ1-5))

k=1 _ k-1 _ . .
Py F 111 ipy+(kel) (3~ 1Z1 Py I~EE(1-py ) K = 2,3,...,[logT)

Let us estimate Pye Pyr -+ by

$, : min(max(p,,0),1)

. k-1 - k=1

Py = max(ming 121 Py + Pyl - 121 Py .0), k=2,3,...,(100T)
flog™i

Prrogmar 1 - 1 B

Py 20, k> (logT]) + 1.

Now, we show that the estimate of Fr .8 consistent.

There are two different cases:

(1) 1f Prl{l = 1) =1, i,e. 01 = 0, then

A2 sEn? (o) aus.

B, +0,2v7 + (1-opiEn? = 21)? yTee) s,

Since (xn) is 1.1.d4., we can apply the law of the

iterated logarithm (Philipp and Stout (1975), p. 26),

a?- B = 0( 7109 logT/T ) a.s.

1

Thus, 8, - Alz V3 gor 7 large encugh. So

r‘ - 61 for T large encugh. This proves the consistency

when P, = §. .

4 1
14y 1f Pr(g « 1)< 1, t.@. py > 0, then

1 a2 e @n? <,ev?

2
+ N=p)(EN® @ 1in B a8,
rou 1 A Tom !

-1/3
using the sssumption Variv)>o. So 3, - AZ > v

e WP by ST A Ui H R, < @

-

tor




—————
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T large encugh. Since R(£¥?)+ 0 (T+= ) and am? -0

and Ai is bounded away from {and below) Ey? for T

large enough, E¥?

» EY? (T+w) a.s. S0, from (3.9,
Sle-xn((nljnl’)/(i¥2-nlz),1)* 0,(T+=) a.s. Also, from
(3.4},  ECL Z1/(1~5))% BE (T+= ) a.s.

Now, we will show by induction that for all k>1,

Py Py {(T+=) a.8. From (3.2) with {a,8) = (1,1)

T-t
1
;ﬁ: F ngl BaXner = PeEMYIHE;) (Y 4e )4 (1mp, JEAY 4] (¥, 0c,)

= o e ?) 4 (20? as.

S0, o, =i} Tfl XX ., A2 e o (Tee
L R T 1) 0y (T} as,

Wow, suppose ‘;1‘ Py (Te=) a.s. for i=1,2,...,k-1.
Prom (3.4),

K-

[ w1 - (k43 - k41~ -
K+l t ‘2, (k+1-4)pg - py ) /EE

-« k=l . k-1 . .
Bt I ip e e - Sy PO T O - By en (Tee) ai.
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Finally, since lim By = Py 8.8, K=1,2,... 0P ,Pyu.cn)
is a consistent estimate of rc .0

Having established Proposition 2.1, it is important to
note that with the use of Equations(3.5) -~ (3.12) we can
show that t\’z, EYJ. BY‘, Ecz. E:], and Ec‘ can be con-
sistently estimated when LI 0.

To approach question Q2, we derive
Proposition 3.2

Msume that EZ<a , Prit=1)< 1, F, = N(0,07) and
F, = u(o,ocz) vhere FE,O,oz and czt are unknown. Then

or all k > 1 there exist gék) (x'{,'r) such that

(k)
n

T 2 nek 2
;i: Blg = (X,.,T) - up) = BB lx"_k) - ug)

uniformly €or n=k+l,...,T-c(T)

whers c(T) 4is an arbitrary positive integer valued,
increasing unbounded function.

Proof of Proposition 3,2

From Proposition 3.1 there exist consistent estimates
La$®, e, §a$T, e, Saf'™ e ane
;c (x‘l’(ﬂ.e(ﬂ) of F,.0,0 and o, .cr;lptcuvely. In
particular, § cen be chosen to be 1£1 X, fc(T). By

statfonarity,




-
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n+k

- N 2k+1 2
BB,y (Xply) = ugd® = BUEy fuy X5 -y )

for n=k+l,...,T-c(T)

n+c{T) , elm)),

n+l
s nec(T ~ N+ o
SRS M oemn, ST, cor) ana o XTSI, cqmny.

where En = expectation under f-z(x

Therefore, we need only show

o 2k+1 2 2k+1 2
11 - -
Hme By oy ey 131770 = o)™ = B 1T -y
Obviously,

T tnen! N sr | AP e s

- 2k+ a
Since sku(ukﬂlxl 1) 4s boundcdByux(|e|.|x’l.....lxn,ll).

2 M1y 2 2xe1 2
Um BBy iy 13X = ugag)” = BB I -y yy)

by the dominated convergence theorem. O
Remark 1:

T™his proof of Proposition 3.2 ~1wost establishes the
uniform asymptotic optimality of in(unlx:::) as an
estimste of » for Kk+leneP-clT) and X large,
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Remark 2:
Although in Proposition 3.2 FY and PE are required

to be Gaussian, the same result can be proved if they

belong to (regular) parametric families of distributions

whose parameters can be estimated consistently.

4. An Empirical Bayes Estimate Using Model A with Unknown

Parameters

In general, a step-function signal can be either
deterministic or stochastic and therefore Model A, or even
the general model, can fail to be satisfied. Why then should
we consider these models? The basic idea is that it is
hoped the unknown signal would resemble a "typical” real-
ization of these models with properly assigned parameters
or distributions. Indeed, this is a possible interpretation
of the empirical Bayes idea. The most famous example ia
the James-Stein estimate which shows some superiority to
the classical estimate of the wmean of a multivariate
normal distribution .,

It is alwmost impossible to produce a sensible estimate
of the signal without any inforwation about the structure
of the signal and/or the noise. Hance, our first assumption
is that the noise is Gaussian white noise. One main reason
to have tha Gaussian assusption §s that it ia hard to
distinguish outliers from jumps if the noise has a heavy
tailed distribution. Puthermore, if the step-function

i
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signal has many jumps, the noise variance cannot be well
estimated. Indeed, the noise variance in Model A is

not identifiable without further information. For instance,
the observation process (xn) is i.i.4. N(0,1) when
(P»O'U.ot) = {1,0,1,0) or (p,0,0,1) . So, we make the
second assumption that the rate of jump in the signal is

at wost Py where Po is a specified number between 0
and 1,

As the next step in generalizing our estimation
procedure, let us assume that Model A applies with un-
known parameters p,o.a,uc and apply maximum likelihood
to estimate these parameters. To be more precise, we
estimate the signal U, as follows, First, fit Model A
to the observations X, (1<i<T) by finding the maximum
likelihood estimates (MLE) $,6,0 and G_ with the

constraint that p < Po- Next, estimate Ya by

ot I T
WD) uy” 2 Bp,6,0.0,0 Ya 1%

where EB stands for empirical Bayes.
Since the MLE matisfy, (for constants a ¢ 0,¢),

Plaxy+e, ... 8% sc) = plRy,. e Ry

16.2) S(axyoc, ... akytc) = BB(R;,euniXy) 4 €

-16-

o(aX,4c,..., 8K 4C) = lalo (X genoXg)
o (aX,+c.... . aXy4c) = la] O (RysenisXy)

and since Model A is time reversible, we have
Proposition 4.1
The empirical Bayes estimator of u_, G:B. is

translation invariant, scale invariant and time reversible.

That is,

~EB ~EB
L ('xx’c""'“r‘c) *au, (xl,....x.l.) +c

~ED -EB
ol IPPRRN S 3O s T SRS P

The computation of the MLE can be very time-
consuming, A naive method may require 0(27) operations
to compute the likelihood for each quadruple (p,o,o.ut).
We present in Proposition 4.2 a representation of the
1likelihood function which reduces the number of operations
to the order of T2, Since the 1og likelihood L(p,o.c.ulﬂq)

satisfien




——— -

-36=-

(4.3 L(P,8,0,0.:X]) = L(P,0,0/0,,15 (X")]) - T log o,

where )('n - ‘xn'”/":' we need only consider L(p,o.a,!.:x;).
n

Let S, 0 and snskz1 X, for L<n<T.

Proposition 4.2

r-1
L(p,0,0,1;X] = x1) = log £, (x,) + | log £, tx,  IXT=x])
1 n=1 n+l

where
it 210

LX) = N(0,0%),
n 8 -8
o 1y (n) n_n~k 1
(4.4) L(x ,1X)) = (1-p) le A N=—5F, —p+ 1)

spN19,0? v 1y

and A are defined in Proposition_ 4.2 of Yso (1982).

Proof of Proposition 4.2
¥e need only derive (4.4). However, this is a simple

q of Proposition 4.2 of Yao (1982) and the
following identity.

n
LOX gy IXD) = Ly, + e ] )

= Llu  1XH0 N0, 1)

© (-p)Ltu,IxD) + P Nt0.07)) @NCO,1)

reme PO
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= -pILGu IXHON(0,1) « p Nio,07+1)

where (, @, ° the convolution of law L, with L,.o

5. An_Approximation to the Likelihood and the Pseudo MLE

Even though Proposition 4.2 suggests a way to compute
the likelihood with 0(T?) operations, it is still time-
consuming to compute the MLE without further reduction in
computation. Therefore it is desired to find a more
efficient way to approximate the ljkelihood. We will wmake
use of an ides of Harrison and Stevens (1976) to develop
an approximation procedure which reduces the number of
operations to the order of T. This idea has been used and
justified in Yao (1982).

We approximate l.()(,"1 | X'l') as follows. Again, assume
8= 0 and Oc= 1 for simplicity. In Section 5 of Yao
(1982), N (gt 2) 1is introducea to approximate L (v {x7)

where On and 1: are defined recursively. Since
L X = (op) NG (XTION (0,1) + pN(0,0%41)
n+ll 71 n'"1 ' 4

we are naturally led to approximate l.(xn dle) by
(-p) Nio,x2e1) + pMo,ce).

Wow we can approximate the log likelihood L(p,9,0,0.:X])
by use of Proposition 4.2 and the above approximation and
dencte this approximate log likelihood by Tip.® 0.0 :x]).

It should he noted that this approximation is exact

i
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when p is 0 or 1, for Model A is a Gaussian
system when p is 0 or 1. Now we propose to measure
this approximation in terms of the Rullback information
between exp(L) and exp(l::) under Model A. More

precisely, we will treat

T T 1
510 Ig(pi0,0,00) B g o 5 ) 1L(P18010 X)L 1P L8, 0va X))

as a measure of how well L {s approximated by L. Note

that

(5.2) 1(p,8,0,0.) = IR(p,O.u/at,l)

We considered 63 cases where

pe(0.02, 0.05,0.1, 0.2, 0.4,0.6, 0.8} ,0c{0.5, 1,2,3,4,5,7,10,15} ,

=0 and o, = 1. The XK ware estimated by use of sim-
uvlation with a computer (NP 3000) where 400 samples of
size T = 20 were generated for each case. The results

are presented in Table 5.1.

According to Table 5.1, E(L-L)< 0.14, and SD(L-L)¢ 0.48.

Fere SD(Y) is the standard deviation of random variable
¥. 8o,

“1.44< E(L~L) - 3 8D(L-L) <E(L-L) + 3 8D(L~L) < 1.58

The probability that the 1ikelihood ratio up(L-i) satisfies

-19-

0.24 = exp(-1.44) < exp(L-L)< exp(1.58)+ 4.85
is very high in the worst case under Model A. This suqgests
that the approximation will yield reasonably good results.
We shall define the pseudo MLE 5',5',5'.3; as the
values of the parameters which maximize L subject to

by

P < Py Then we estimate .

s B avarata T
5.3) uy = B(p',e',c:o: ) ("n|xl)'

6. Simylation on Empirical Bayes ¥stimators

In the last section, we have introduced, for the sake
of computation, G;‘ which is an approximation to ;:B‘
In order to evaluate the performance of G;‘, we carried
out the following computer simulations on an HP 3000.

¥e considered 21 deterministic signal sequences
(u,(‘”) of length T = 20 (1l<nc<20, 1<ic<2l). For each
signal sequence, we generated 100 samples of Gauasian
white noise of variance 1.

In defining ﬁ;. we estimated the parameters of
Model A by use of pseudo maximum likelihood. 1t is
interesting to see how well the method of moments can do
comparad to the pseudo maximum likelihood method. It is
also interesting to see how much the additional information

o, = 1 can contribute to estimating Yae
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Hence, we considered the following four estimators of u
n°

(i) Estimator 1 - Uye Py = 0.2

(ii) Estimator 2 -~ This is defined in the same way

as Estimator 1 except with one more constraint ¢ = |
€
in the pseudo maximum likelihood estimation of the

parameters.

{i11) Estimator 3 - T
8(p1'°l.°1'u£1) ‘unlxl) where

P) = max(min(p,,0.2),0), 8, = X (the sample mean),

o, = -
3 = maxl( 02.0), Opq = max( 0:2.0) and Pye0yi0,
satisfy

2

I 2, 2, 2
X /T =X
at1 n/ + 03 *0.5

™1
n21 Ay Xpay/(P-1) = %, ll-pz)dg-

™2
nzl X Xnez/ (T-2) = Lo (1'92)2022.

(iv) ©Eatimator 4 - T
!(PJ.OJ.O,.c:J)(“n“l’ where

-21-

py = max{min(p,,0.2),0), 0, = X, 04 = max( 0,000, %1

and p‘. satisfy

Ga

T
Exz/'l‘-'x’z-tuzol
p=1 "

T-1
=2

2
xmll('r—l) = X° + (l—p‘)d‘

nzl *n

we use the average of mean squared errors (AMSE) as
the criterion. The simulation results are presented in
Table 6.1 where we also present the mean and standard
deviation of oc', the pseudo MLE of L
Note:

All the four estimators have one common property.
That is they first estimate P'e"’"’c and then estimate

n
In the simulation above, we actually computed the approximate

T
u by the corresponding Bayes estimate E(p,e.o,o()(“n'xl)‘

Bayes estimate (see Yao (1982), Section 5) instead of the
exact one.
Remarks: (Based on Table 6.1)

(1) TRoughly speaking, when the number of jumps
incresses,the AMSE of ;:‘ increases. When the size of
juwps increases, the AMSE of ;:‘ first increases and then

decresses. For when the size of jumps is moderate (i.e.
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compatiable with the noise) it is hard to tell where jumps
take place and to take appropriate action. This property
is similar to that of the Bayes estimator. (See Remark
1 of Section 7 in Yao (1982)).

2) Estimator 1 G ")
This implies that the method of pseudo maximum likelihood

is better than Estimator 3.

is significantly better than the method of moments in
finding suitable parameter values.

(3) Estimator 1 is just slightly worse than Estimator
2. So the information about the noise variance i{s not
very important for estimating the signal unless the rate
of change in the signal is high, In that case, it is
hard to estimate L well,

(4) The empirical Bayes estimator, is robust

.
n’
against the signals' behavior. However, it is not known
how to deal with cases involving non-Geussian noise which
may introduce outliers under the veil of jumps.

(5) When the prior information, the rate of change

£ Pys 38 not correct, i ' may be nisleading, although

n
our limited simulations do not indicate no.
c" the pseudo MLE

estimates o, well with small bias. This is

(6) It is interesting that M
of Gcl

essentially due to the information p < P

88}

121

£3)
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Appendix

Proof of (3.1} and (3.2) in Proposition 3.1

It is not difficult to see by applying the Gaal-
Koksma strong law of large numbers (Philipp and Stout
(1975), Appendix 1) that we need only show

T
tim 1 W = a
gy Lo oz Evpas 1ca o4

and

tin LTI LB L g8
Tom T a1 uanOI Vybyey 8.8, L > 1, a+g <4

For example, aince

T T
1 2.2 _1
T nzluncn *F

ana im 77}
T-

-

T 2.2 2

n§1v"'t“ -~ B¢”) = 0 a.s. by the Gaal-Koksma

strong law of large numbers, tim Tt 1
Tow

T
! U:t: - !u{!t’ a.s.

12 tim 1} 2 2
Tom nzl ¥y = lu, a...
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In the following we only treat one case, i.e.

1 "{’l
Lim vy = By a.s. for 1
e T ey PO pig Y] z

and the rest can be established similarly.

un z 0 , if there exists k such that
nogony <né t
) - l:'lz othervise
= Fnndt ‘
2 - 2
Vo ¥ Vplnet (EY)*, 4if there exists k such that
LI net
z 0 , otherwise

(un) and (Vn) are stationhary.

o2 2 w1
£( nzl G e mEyT e 2 k)-:x (n-k) BU; Y

=nzg?e2 2

w1 2 2
xt (Nek) Pr(£'> keLIE(Y-EY)
1

on ey? o 2 pertemrh? meny
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r{: 2 2 R-1 N T-0 'r}v. , 0
E( V)© = NEVS + 2 " (N-k) EV, tim 2 { U+ v a.s
a1l P 1 kzl 1“1 Poen T n=1 M n=1
so,
2 X N-1
=NEVS+2 ] (NK)EVV 42 T
k=l k=i 1 T tim 1 (Ey? ED2T-1-0)1 a.s
i 1 - u = lim = c + -1-c .5,
_:::1' ”Z] Vntner T 0 T
(N-k) EV,V,
1'k41 where
S i | o2 5 a-1
< N(EV,“+2 EV,V, +2 Pr(no k h that - —f-
< 1 BT kzul r(no k, suc| a et kil max(n -m ) -1,0) + max(T-t ng-1+9
da : inf (k:v\k"ﬂ
- 2 - 2
l*ljnkl<l¢k)E(Y1Y2 (EY) I(YZYJ (EY)"))
Now, by the strong law of large numbers,
rev,? X o2 T
= N{EV + 2 V. +2 . T
1 xiy 1P %al*? L ;{: - Etas.
< = - » B
Pr (£75k-2) (EY) Var (1)) Lim 3 = Emaxiiot,0) -8
1] v )
2 . 2 - T k Pric = k#t
< wiev,© o+ 2 ,Z,""ﬂul"z £L° (2Y)“ mr () x=1
Therefore, by the 3sal-Foksma strong law of large nunmbers, Therefore,
- —
~
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Table 5.1

N ——— e e o

Kullback Information between exp(L) and exp(l:)

under Model A

The upper and lower figures are B(L~£) and SD(L-i.) . vespectively

Pl .02 .05 .1 .2 .4 .6 .8
.022 .012 .001 .001 | .001 | .o00 .000
.5
174 .106 072 .038 | 012 .004 .001
.055 .044 .033 { 006 .003 | .002 | .oo00
1
L334 .302 .255 as1 | oLova | Loz20 .001
L099 {.117 | .040 | .02) 012 .000 .000
2
.427 478 | .360 | .265 | .109 | .04s .01
.108 121 .092 .045 .008 | .003 { .o000
3
L430 | .627 | .397 | .22 | 124 | .o54 ] .018
103 | 136 .07 { .052 | .009 | .ooe | .o000
4
418 ] .e88 | .409 .325 a4 | .oe2 .017
090 }.100 ] .0o93 } .057 | .o12 .00S .000
s
426 | .49 .38 | 302 157 { .09 | .o020
L0858 |.o71 | .oe9 | .027 | .021 | .000 { .000
7
376 (.36 | .370 | .208 ] _1ss | .o0s6 | .024
. 057 J.o6 [ .103 { .043 | .029 ]| .000 | .002
1
348 |.3s0 | .30 | 308 | .1s1 | (072 | .c2s
081 | .0a2 | .059 | .029 | .02 .005 | .o00
18
.3%2 | .3 | o4 L300 | 154 | .n%e .M
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Table 6.1 The AMSE of the Estimators over 100 Samples
Signal [ Sucoessive { Points Given s .' T
He . . . . p.t| B | o)
1ghts rof_c_\-\z Est. 1 Bat.2 st. 3 Est. 4 C.P € €
1 0 none .071(.012) .059(,008) .124(.025) 2067(.008)] .0%] .943 | .166
2 0,1 10 .228(.012) .219¢.011) .352(.024) .251(.009)] .1 - 949 .196
3 0,1 10 .254(.018) .241(.017) .670 (.058) .385(.033) .1 .930 .180
4 0,% 10 .187(.019) .185(.019) .486(.050) .189(.018) .1 .970 .165
5 0,1 15 .204(.008) .197(.008) .314(.027) .197(.007)] .1 .961 .162
6 0,3 15 .301(.024) .272(.019) .798(.054) .385(.036) .1 944 204
7 0,2,4 4,10 .370¢.017) .361(.016) .802(.054) .610(.040) .15 .96 .220
L] 0,3,0 7.14 .407(.030) .321(,02%) .947(.071) .642(.060) .1%] .916 .2508
9 0,3,0 5,1% .395(.031) .380(.027) .952(.078) L.700(.067) .15] .913 .222
10 0,4,6 5,15 .356(.022) .35%0(.022) .793(.070) .460(.031)] .1%] .944 .198
8

Table 6.1 - Continued

The number in parentheses next to an entry is the sstimated

standard error for that entry,

This column is the AMSE of the estimator using the averages of the data points between
successive time points of change.

: The estimated standard error of the estimated l(u(') is »(ot')/xo.

11 0,4,6 8,13 .305(.020)| .303(.018) .600(.043) .375(.024) .15 .944 .189
12 0,1,2,3] 4,210,216 .348(.023); .308(.017) .729(.041) .493(.032) .2 .997 .204
13 0,3,6,9] 4,10,16 ) .477(.027)] .4661(.025) .766(,051) .504(.031) .2 1.047 .254
14 0,5,10,15] 4,10,16 ] .328(.032) ) ,314(.031) .720(.046) .305(.032)| .2 .908 | .18%
15 0,1,0,1] 4,10,16 ] .280(.007) | .265(.008) .365(.026) .259(.008) .2 1.014 .180
16 0,3,0,2] 4,10,16 | .535(,038) | .434(.022) .904(.052) L693(.089)] .2 .900 | .34
17 0,1,3,4,8| 3,7,12,16| .426(.018) | .415(.017) .907(.081) L578(.030) | .25 [1.014 | .228
18 p,3,-3,6,0 | 3,7,12,16] .378(.022) | .366(.023) .904(.034) .364(.022)] .25 | .961 | .200
19‘ .509(.021) | .526(.022) .475(.063) J729¢.042) | 1 1.02¢4 | .222
20’ .935(.024) | .993(.022) 1.311(.068) | 2.124(. 030 )1 1.339 | .268
21, .854(,024) | .936(.023) 1.037(.045%) | 1.920(.035)] 1 1.238 | .280
t: Signal 19 is the following. Uy 0.5(n-1), 1 £ n €20

?: Signal 20 ts the following. u = n~1, 1 <0 <1y =21 -0, 12 < n ¢ 20

': Signal 21 is the following, u, = 10-0.1 m-112, 1<n <20







